Corollary: Exponential Function Is Strictly Monotonically Increasing

(related to Proposition: Functional Equation of the Exponential Function)

The real exponential function is strictly monotonically increasing, i.e. for all \(x,y\in\mathbb R\) we have

\[ x < y\Longrightarrow \exp(x) < \exp(y).\]

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983