◀ ▲ ▶Branches / Analysis / Definition: Reciprocal Function
Definition: Reciprocal Function
For a real number $x\in\mathbb R$, $x\neq 0$, the reciprocal function is a function defined by
\[f(x):=\frac 1x.\]
The graph of the reciprocal function is shown in the following figure:
Table of Contents
- Proposition: Derivative of the Reciprocal Function
- Proposition: Integral of the Reciprocal Function
Mentioned in:
Propositions: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983