Corollary: Representing Real Sine by Complex Exponential Function

(related to Definition: Sine of a Real Variable)

The sine of a real variable \(\sin:\mathbb R\to \mathbb R\) can be represented by the exponential function of a complex variable by the following formula:

\[\sin(x)=\frac 1{2i}(\exp(ix)-\exp(-ix)).\]

An alternative notation for this formula is

\[\sin(x)=\frac 1{2i}(e^{ix}-e^{-ix}).\]

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983