Proposition: Sum of Arguments of Hyperbolic Cosine

The following formula holds for the calculation of the sum of arguments of the hyperbolic cosine $\cosh$: $$\cosh(x+y)=\cosh(x)\cosh(y)+\sinh(x)\sinh(y)$$ for all $x\in\mathbb R,$ where $\sinh$ denotes the hyperbolic sine.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983