◀ ▲ ▶Branches / Analysis / Proposition: Sum of Arguments of Hyperbolic Cosine
Proposition: Sum of Arguments of Hyperbolic Cosine
The following formula holds for the calculation of the sum of arguments of the hyperbolic cosine $\cosh$: $$\cosh(x+y)=\cosh(x)\cosh(y)+\sinh(x)\sinh(y)$$
for all $x\in\mathbb R,$ where $\sinh$ denotes the hyperbolic sine.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983