Definition: Hyperbolic Cosine

The real hyperbolic cosine function is a function defined using the real exponential function by the formula

\[\cosh(x):=\frac 12(\exp(x)+\exp(-x))\]

for all \(x\in\mathbb R\). Note that $\cosh$ can be interpreted as the "average" of $\exp(x)$ and $\exp(-x)$.

The following graph visualizes the hyperbolic cosine function:

  1. Proposition: Sum of Arguments of Hyperbolic Cosine

Propositions: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983