Proposition: Sum of Arguments of Hyperbolic Sine

The following formula holds for the calculation of the sum of arguments of the hyperbolic sine $\sinh$: $$\sinh(x+y)=\cosh(x)\sinh(y)+\sinh(x)\cosh(y)$$ for all $x\in\mathbb R,$ where $\cosh$ denotes the hyperbolic cosine.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983