# Proof

In the following, $D$ is a set and $\mathbb F$ denotes either the field of real numbers or the field of complex numbers.

### "$\Rightarrow$"

• Assume, the sequence of functions $f_n:D\to\mathbb F$ is uniformly convergent to a limit function $f:D\to\mathbb F.$
• This is equivalent to the statement: For any given $\epsilon > 0$ there is an index $N$ such that $|f_n(x)-f(x)| <\epsilon$ for all $n\ge N$ and all $x\in D.$
• By the definition of the supremum norm, this is equivalent to the statement: For any given $\epsilon > 0$ there is an index $N$ such that $||f_n-f||_\infty <\epsilon$ for all $n\ge N$ and all $x\in D.$
• By the definition of convergent sequence, this means $\lim_{n\to\infty}||f_n-f||_\infty=0.$

### "$\Leftarrow$"

• Assume, $\lim_{n\to\infty}||f_n-f||_\infty=0.$
• Now, reverse the argumentation of the "$\Rightarrow$" block.

Thank you to the contributors under CC BY-SA 4.0!

Github:

### References

#### Bibliography

1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
2. Heuser Harro: "Lehrbuch der Analysis, Teil 1", B.G. Teubner Stuttgart, 1994, 11th Edition