Definition: Pointwise and Uniformly Convergent Sequences of Functions

Let $\mathbb F$ be a either the field of real numbers or the field of complex numbers and let $D\subseteq \mathbb F$ be the domain of infinitely many given functions $f_n:D\to\mathbb F.$ The sequence of functions $(f_n)_{n\in\mathbb N}$ is called:

Examples: 1
Proofs: 2 3 4 5 6
Propositions: 7 8 9 10 11


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983

Footnotes


  1. i.e. a convergent real sequence (or (a convergent complex sequence