◀ ▲ ▶Branches / Analysis / Lemma: Upper Bound for the Product of General Powers
Lemma: Upper Bound for the Product of General Powers
Let $p,q\in(1,\infty)$ with $\frac 1p+\frac 1q=1$. Then the product of general powers $x^{1/p}y^{1/q}$ (for all positive numbers $x,y$) has the following upper bound:
$$x^{1/p}y^{1/q}\le \frac xp+\frac yq.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983