Problem: The Stonemason's Problem

A stonemason once had a large number of cubic blocks of stone in his yard, all of exactly the same size. He had some very fanciful little ways, and one of his queer notions was to keep these blocks piled in cubical heaps, no two heaps containing the same number of blocks. He had discovered for himself (a fact that is well known to mathematicians) that if he took all the blocks contained in any number of heaps in regular order, beginning with the single cube, he could always arrange those on the ground so as to form a perfect square.

This will be clear to the reader, because one block is a square, $1 + 8 = 9$ is a square, $1 + 8 + 27 = 36$ is a square, $1 + 8 + 27 + 64 = 100$ is a square, and so on. In fact, the sum of any number of consecutive cubes, beginning always with 1, is in every case a square number.

One day a gentleman entered the mason's yard and offered him a certain price if he would supply him with a consecutive number of these cubical heaps which should contain altogether a number of blocks that could be laid out to form a square, but the buyer insisted on more than three heaps and declined to take the single block because it contained a flaw. What was the smallest possible number of blocks of stone that the mason had to supply?

Solutions: 1

Problems: 1
Solutions: 2

Thank you to the contributors under CC BY-SA 4.0!

Github:

non-Github:
@H-Dudeney

References

Project Gutenberg

1. Dudeney, H. E.: "Amusements in Mathematics", The Authors' Club, 1917

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this edition or online at http://www.gutenberg.org. If you are not located in the United States, you'll have to check the laws of the country where you are located before using this ebook.