(related to Lemma: De Morgan's Laws (Logic))
$[[x]]_I$ | $[[y]]_I$ | $[[\neg x]]_I$ | $[[\neg y]]_I$ | $[[x\wedge y]]_I$ | $[[\neg(x\wedge y)]]_I$ | $[[(\neg x)\vee (\neg y)]]_I$ |
---|---|---|---|---|---|---|
$1$ | $1$ | $0$ | $0$ | $1$ | $0$ | $0$ |
$0$ | $1$ | $1$ | $0$ | $0$ | $1$ | $1$ |
$1$ | $0$ | $0$ | $1$ | $0$ | $1$ | $1$ |
$0$ | $0$ | $1$ | $1$ | $0$ | $1$ | $1$ |
Similarly, we construct truth tables for $\neg(x\vee y)$ and $(\neg x)\wedge(\neg y)$ respectively: $[[x]]_I$| $[[y]]_I$| $[[\neg x]]_I$| $[[\neg y]]_I$| $[[x\vee y]]_I$| $[[\neg(x\vee y)]]_I$| $[[(\neg x)\wedge (\neg y)]]_I$ $1$| $1$| $0$| $0$| $1$| $0$| $0$ $0$| $1$| $1$| $0$| $1$| $0$| $0$ $1$| $0$| $0$| $1$| $1$| $0$| $0$ $0$| $0$| $1$| $1$| $0$| $1$| $1$
Since the values in both columns to the right of the table are equal, it follows that the equivalence $\neg(x\vee y)\Leftrightarrow(\neg x)\wedge (\neg y)$ is a tautology.