Lemma: De Morgan's Laws (Logic)

Let $x,y$ be two propositions. In the semantics of propositional logic, the following laws hold for the conjunction "$\wedge$", disjunction "$\vee$" and negation "$\neg$":

$$\begin{array}{c}\neg(x\vee y)=(\neg x)\wedge (\neg y),\\\neg(x\wedge y)=(\neg x)\vee (\neg y).\end{array}$$

This law is named after Augustus De Morgan (1806 - 1871).

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982