Proof
(related to Lemma: Negation of an Implication)
Context
- Let $x,y$ be two propositions.
- We want to show that $\neg (x\Rightarrow y)\Longleftrightarrow (x \wedge \neg y).$
Hypothesis
- Take the negated implication $\neg(x\Rightarrow y)$.
Implications
| \(\models(x)\) | \(\models(y)\) | \(\models(x \Rightarrow y)\) | \(\models\neg(x \Rightarrow y)\) | 
| \(1\) | \(1\) | \(1\) | \(0\) | 
| \(0\) | \(1\) | \(1\) | \(0\) | 
| \(1\) | \(0\) | \(0\) | \(1\) | 
| \(0\) | \(0\) | \(1\) | \(0\) | 
- Based on the truth tables of the negation and conjunction, the truth table of $(x\wedge \neg y)$ is given by
\(\models(x)\)| \(\models(y)\)| \(\models(\neg y) \)| \(\models(x \wedge \neg y)\)
 \(1\)| \(1\)| \(0\)| \(0\)
 \(0\)| \(1\)| \(0\)| \(0\)
 \(1\)| \(0\)| \(1\)| \(1\)
 \(0\)| \(0\)| \(1\)| \(0\)
Conclusion
- Since the outcomes (columns to the right) of both truth tables are equal, we have shown the equivalence  $\neg (x\Rightarrow y)\Longleftrightarrow (x \wedge \neg y).$∎ 
Thank you to the contributors under CC BY-SA 4.0!   
  
- Github:
-   
 
References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982