Proof

(related to Lemma: Negation of an Implication)

Context

Hypothesis

Implications

\(\models(x)\) \(\models(y)\) \(\models(x \Rightarrow y)\) \(\models\neg(x \Rightarrow y)\)
\(1\) \(1\) \(1\) \(0\)
\(0\) \(1\) \(1\) \(0\)
\(1\) \(0\) \(0\) \(1\)
\(0\) \(0\) \(1\) \(0\)

\(\models(x)\)| \(\models(y)\)| \(\models(\neg y) \)| \(\models(x \wedge \neg y)\) \(1\)| \(1\)| \(0\)| \(0\) \(0\)| \(1\)| \(0\)| \(0\) \(1\)| \(0\)| \(1\)| \(1\) \(0\)| \(0\)| \(1\)| \(0\)

Conclusion


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982