◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Existence of Inverse Rational Cauchy Sequences With Respect to Addition
Proposition: Existence of Inverse Rational Cauchy Sequences With Respect to Addition
For every rational Cauchy Sequence \((x_n)_{n\in\mathbb N}\) there exists an inverse rational Cauchy Sequence \((-x_n)_{n\in\mathbb N}\) such that the sum of both sequences equals the Cauchy sequence of rational zeros:
\[(x_n)_{n\in\mathbb N}+(-x_n)_{n\in\mathbb N}=(0)_{n\in\mathbb N}.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013