◀ ▲ ▶Branches / Numbersystemsarithmetics / Proposition: Existence of Inverse Rational Cauchy Sequences With Respect to Addition
Proposition: Existence of Inverse Rational Cauchy Sequences With Respect to Addition
For every rational Cauchy Sequence \((x_n)_{n\in\mathbb N}\) there exists an inverse rational Cauchy Sequence \((x_n)_{n\in\mathbb N}\) such that the sum of both sequences equals the Cauchy sequence of rational zeros:
\[(x_n)_{n\in\mathbb N}+(x_n)_{n\in\mathbb N}=(0)_{n\in\mathbb N}.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Kramer Jürg, von Pippich, AnnaMaria: "Von den natürlichen Zahlen zu den Quaternionen", SpringerSpektrum, 2013