Proposition: Existence of Inverse Rational Cauchy Sequences With Respect to Addition

For every rational Cauchy Sequence \((x_n)_{n\in\mathbb N}\) there exists an inverse rational Cauchy Sequence \((-x_n)_{n\in\mathbb N}\) such that the sum of both sequences equals the Cauchy sequence of rational zeros:

\[(x_n)_{n\in\mathbb N}+(-x_n)_{n\in\mathbb N}=(0)_{n\in\mathbb N}.\]

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013