Proposition: Sum of Binomial Coefficients II
For any element of a ring \(x\in(R,+,\cdot) \) and any natural number \(n\ge 1\) the following sum formula holds:
\[\sum_{k=0}^nk\binom nk(1-x)^{n-k}x^k=nx.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Bosch, Karl: "Elementare Einführung in die Wahrscheinlichkeitsrechnung", vieweg Studium, 1995, 6th Edition