Problem: Calculating Quadratic Residues
To find out, if for a given prime number $p > 3,$ the number $3$ is a quadratic residue modulo $p,$ i.e. the congruence $x^2(p)\equiv 3\equiv(p)$ has a solution.
Table of Contents
Solutions: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927