Problem: Calculating Quadratic Residues

To find out, if for a given prime number $p > 3,$ the number $3$ is a quadratic residue modulo $p,$ i.e. the congruence $x^2(p)\equiv 3\equiv(p)$ has a solution.

Solutions: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927