◀ ▲ ▶Branches / Number-theory / Definition: Quadratic Residue, Quadratic Nonresidue
Definition: Quadratic Residue, Quadratic Nonresidue
Let $m > 0$ be a positive integer. An integer $n\in\mathbb Z$ is called a quadratic residue modulo $m,$ if the congruence $$x^2(m)\equiv n(m)$$ is solvable, otherwise it is called a quadratic nonresidue.
Examples
- For the module $m=1$, any integers $n$ is a residue, since $x^2(1)\equiv 0 (1)\equiv n(1)$ is always solvable.
- If $n=0,$ $n=1,$ or $n$ is a perfect square, then $n$ is a quadratic residue modulo any positive integer $m > 0.$
Mentioned in:
Definitions: 1
Explanations: 2
Problems: 3
Proofs: 4 5 6
Propositions: 7 8 9
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927