Proof
(related to Proposition: Cancellation of Congruences With Factor Co-Prime To Module, Field $\mathbb Z_p$)
- Let $m > 1$ be a positive integer and $a,b,c$ be integers.
- By hypothesis, we have $m\mid (ac-bc)=c(a-b).$
- Also by hypothesis, $c$ and $m$ are co-prime, therefore from divisors of a product of two factors, co-prime to one factor, it follows that $m\mid (a-b).$
- Therefore $a(m)=b(m).$
- It remains to be shown that if $m=p$ is a prime number, then $\mathbb Z_p$ is a finite field.
- In particular, for every nonzeror $a(p)\in\mathbb Z_p,$ there is an multiplicative inverse element $a^{-1}(p)\in\mathbb Z_p$ and the congruence $(ax)(p)\equiv b(p)$ has the unique solution $x(p)\equiv (b\cdot a^{-1})(p).$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Kraetzel, E.: "Studienbücherei Zahlentheorie", VEB Deutscher Verlag der Wissenschaften, 1981