Definition: Sets of Integers Co-Prime To a Given Integer

Let \(d\in\mathbb Z\) be an integer. By \(\mathbb Z_d\subseteq \mathbb Z\) we denote the subset of integers relatively prime to \(d\). Formally

\[n\in \mathbb Z_d\Longleftrightarrow n\perp d.\]

Examples

  1. Lemma: Sets of Integers Co-Prime to a given Integer are Divisor-Closed

Lemmas: 1
Proofs: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Piotrowski, Andreas: "Anmerkungen zur Verteilung der Primzahlzwillinge", Master’s thesis, Frankfurt am Main, 1999