Proof

(related to Lemma: Sieve for Twin Primes)

By hypothesis, $n\ge 1$ is an integer and let $f_s:=\left\lfloor\frac {s+1}6\right\rfloor$ using the floor function.

"$\Rightarrow$"

"$\Leftarrow$"


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Piotrowski, Andreas: "Anmerkungen zur Verteilung der Primzahlzwillinge", Master’s thesis, Frankfurt am Main, 1999

Footnotes


  1. $s$ has either the form $6\nu-1$ or $6\nu+1$ for some $\nu\ge 1.$ If $s=6\nu-1$ then $6f_s-1=6\left\lfloor\frac{6\nu-1+1}{6}\right\rfloor-1=6\nu-1=s$. If $s=6\nu+1$ then $6f_s-1=6\left\lfloor\frac{6\nu+1+1}{6}\right\rfloor-1=6\lfloor\nu+\frac 13\rfloor-1=6\nu-1=s.$ In both cases, $s=6f_s-1.$