Proof
(related to Proposition: Sum of Möbius Function Over Divisors)
- Let $n\ge 1$ be a natural number.
-
For $n=1,$ the sum of the Möbius function over the divisors of $n$ equals $\sum_{d\mid 1}\mu(d)=\mu(1)=1,$ as required.
-
For $n > 1$ with the factorization $n=p_1^{e_1}\cdots p_r^{e_r},$ we have $\mu(d)=0$ for non square-free divisors $d\mid n.$
- In the remaining sum, there are exactly $\binom rk$ square-free divisors $d$ with exactly $k$ different prime factors.
- By the definition of the Möbius function, it follows
$$\begin{array}{rcl}
\sum_{d\mid n}\mu(d)&=&\sum_{d\mid n,\text{ square-free}}\mu(d)=1+\binom{r}{1}(-1)+\binom{r}{2}+\cdots+\binom{r}{2}(-1)^r\\
&=&\sum_{k=0}^r\binom rk(-1)^k.
\end{array}$$
- The last sum equals by the binomial theorem $(1-1)^r=0.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927