◀ ▲ ▶Branches / Number-theory / Proposition: Sum of Möbius Function Over Divisors
Proposition: Sum of Möbius Function Over Divisors
For any natural number $n\ge 1$, the sum of the Möbius function over the divisors of $n$ equals $0$ unless $n=1$. Only for this special case the sum equals $1.$ Using the "Iverson notation
for sums":https://www.bookofproofs.org/branches/sums/, this can be written as
$$\sum_{d\mid n}\mu(d)=[n=1].$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Scheid Harald: "Zahlentheorie", Spektrum Akademischer Verlag, 2003, 3rd Edition
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927