Proof
(related to Proposition: De Morgan's Laws (Sets))
- Suppose that $A$ and $B$ are sets.
- We want to show that for the set intersection "$\cap$", set union "$\cup$" and set complent "$^C$", the laws $(A\cap B)^C=(A^C)\cup (B^C)$ and $(A\cup B)^C=(A^C)\cap (B^C)$ hold.
Part 1: $(A\cap B)^C=(A^C)\cup (B^C)$
We first show $(A\cap B)^C\subseteq (A^C)\cup (B^C)$
We now show $(A^C)\cup (B^C)\subseteq (A\cap B)^C$
Conclusion
- From both steps of Part 1 and the equality of sets it follows that $(A\cap B)^C=(A^C)\cup (B^C).$
Part 2: $(A\cup B)^C=(A^C)\cap (B^C)$
We first show $(A\cup B)^C\subseteq (A^C)\cap (B^C)$
We now show $(A^C)\cap (B^C)\subseteq (A\cup B)^C$
Conclusion
- From both steps of Part 2 and the equality of sets it follows that $(A\cup B)^C=(A^C)\cap (B^C).$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016