Proof
(related to Theorem: Distinction Between Finite and Infinite Sets Using Subsets)
Finite case "$\Rightarrow$"
Infinite case "$\Rightarrow$"
- Assume, $X$ is infinite.
- Choose $x_1\in X,$ $x_2\in X\setminus\{x_1\},$ $x_3\in X\setminus\{x_1,x_2\},$ etc.
- Since $X$ is infinite, we can continue this process for all indices $i\in\mathbb N$ be mapping $f:\mathbb N\to X,$ $f(i):=x_i.$
- By construction, this is an injective function $f:\mathbb N\to X.$
- Now, define the function $g:X\to S$ ($S$ being a proper subset of $X$) as follows:
$$g(x):=\begin{cases}x&\text{if }x\in X\setminus \{x_i\mid i\in\mathbb N\}\\x_{i+1}&\text{if }x=x_i\end{cases}$$
- By construction, the function $g$ is injective as well.
Infinite case "$\Leftarrow$"
- By contraposition to finite case $"\Rightarrow",$ if there is an injective function $f:X\to S,$ then $X$ is not finite, therefore $X$ is infinite.
Finite case "$\Leftarrow$"
- By contraposition to the infinite case $"\Rightarrow",$ if there is no injective function $g:X\to S,$ then $X$ is not infinite, therefore $X$ is finite.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Flachsmeyer, Jürgen: "Kombinatorik", VEB Deutscher Verlag der Wissenschaften, 1972, 3rd Edition