Proposition: More Characterizations of Finite Sets

Let $X,Y$ be finite sets with equal cardinalities $|X|=|Y|<\infty.$ Then:

  1. If $f:X\to Y,$ is surjective, then $f$ is injective.
  2. If $f:X\to Y,$ is injective, then $f$ is surjective.

Note: This implies $$f\text{ invective }\Leftrightarrow f\text{ surjective }\Leftrightarrow f\text{ bijective }$$

3 If $|Y| < |X|,$ then no injective function $f:X\to Y$ exists.

3 If $|Y| < |X|,$ then no injective function $f:X\to Y$ exists.

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001