◀ ▲ ▶Branches / Set-theory / Proposition: More Characterizations of Finite Sets
Proposition: More Characterizations of Finite Sets
Let $X,Y$ be finite sets with equal cardinalities $|X|=|Y|<\infty.$ Then:
- If $f:X\to Y,$ is surjective, then $f$ is injective.
- If $f:X\to Y,$ is injective, then $f$ is surjective.
Note: This implies $$f\text{ invective }\Leftrightarrow f\text{ surjective }\Leftrightarrow f\text{ bijective }$$
3 If $|Y| < |X|,$ then no injective function $f:X\to Y$ exists.
3 If $|Y| < |X|,$ then no injective function $f:X\to Y$ exists.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001