Proof
(related to Lemma: Equivalence of Set Inclusion and Element Inclusion of Ordinals)
"\Leftarrow".
- Let \alpha\subseteq \beta.
- If \alpha=\beta, we are done.
- Assume, therefore that \alpha\subset \beta.
- We have \beta is an ordinal, \alpha\subset \beta and \alpha is transitive.
- It follows from the equivalent notions of ordinals that \alpha\in \beta.
"\Rightarrow".
- Let \alpha\in\beta or \alpha=\beta.
- If \alpha=\beta then \alpha\subseteq\beta, and we are done.
- Assume, therefore, that \alpha\in\beta.
- Since \beta is an ordinal, \beta is transitive, i.e from x\in\alpha and \alpha\in\beta it follows that x\in \beta
- Altogether, it follows that \alpha \subset\beta.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011
- Hoffmann, D.: "Forcing, Eine Einführung in die Mathematik der Unabhängigkeitsbeweise", Hoffmann, D., 2018