Proof
(related to Lemma: Equivalence of Set Inclusion and Element Inclusion of Ordinals)
"\(\Leftarrow\)".
- Let $\alpha\subseteq \beta.$
- If $\alpha=\beta,$ we are done.
- Assume, therefore that $\alpha\subset \beta.$
- We have $\beta$ is an ordinal, $\alpha\subset \beta$ and $\alpha$ is transitive.
- It follows from the equivalent notions of ordinals that $\alpha\in \beta.$
"\(\Rightarrow\)".
- Let $\alpha\in\beta$ or $\alpha=\beta.$
- If $\alpha=\beta$ then $\alpha\subseteq\beta,$ and we are done.
- Assume, therefore, that $\alpha\in\beta.$
- Since $\beta$ is an ordinal, $\beta$ is transitive, i.e from $x\in\alpha$ and $\alpha\in\beta$ it follows that $x\in \beta$
- Altogether, it follows that $\alpha \subset\beta.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011
- Hoffmann, D.: "Forcing, Eine Einführung in die Mathematik der Unabhängigkeitsbeweise", Hoffmann, D., 2018