◀ ▲ ▶Branches / Set-theory / Proposition: Ordinals Are Downward Closed
The previous different but equivalent notions of ordinals reveal a major property of all ordinal numbers.
Proposition: Ordinals Are Downward Closed
Let $X$ be an ordinal number. Then each element \(w \in X \) is also an ordinal number.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Lemmas: 2
Motivations: 3
Proofs: 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011