◀ ▲ ▶Branches / Set-theory / Lemma: Equivalence of Set Inclusion and Element Inclusion of Ordinals
Since ordinals are downward closed, the elements $\alpha, \beta\in X$ are ordinals themselves if $(X,\in_X)$ is an ordinal. This leads to the following lemma, concerning any ordinals.
Lemma: Equivalence of Set Inclusion and Element Inclusion of Ordinals
For two ordinals $\alpha$ and $\beta$ the following are equivalent:
- $\alpha\subseteq\beta$
- $\alpha\in\beta$ or $\alpha = \beta.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011