Since ordinals are downward closed, the elements $\alpha, \beta\in X$ are ordinals themselves if $(X,\in_X)$ is an ordinal. This leads to the following lemma, concerning any ordinals.

Lemma: Equivalence of Set Inclusion and Element Inclusion of Ordinals

For two ordinals $\alpha$ and $\beta$ the following are equivalent:

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011