Proof
(related to Proposition: Ordinals Are Downward Closed)
- Let $X$ be an ordinal.
- From the equivalent notions of ordinals it follows that if $w\in X$ then $w$ is a transitive set and a proper subset $w\subset X.$
- Since all elements of $x\in X$ are transive, this holds also for the elements $x\in X\cap w.$
- Therefore, all elements $x\in w$ are transitive.
- This means that $w$ is an ordinal.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Hoffmann, Dirk W.: "Grenzen der Mathematik - Eine Reise durch die Kerngebiete der mathematischen Logik", Spektrum Akademischer Verlag, 2011