◀ ▲ ▶Branches / Topology / Proposition: Continuity of Compositions of Functions
Proposition: Continuity of Compositions of Functions
Let $(X,\mathcal O_X),$ $(Y,\mathcal O_Y),$ and $(Z,\mathcal O_Z)$ be topological spaces. Let $f:X\to Y$ and $g:Y\to Z$ be continuous functions. Then the composition $g\circ f:X\to Z$ is continuous.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1 2 3
Proofs: 4 5
Propositions: 6
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970
- Jänich, Klaus: "Topologie", Springer, 2001, 7th Edition