Definition: Isolated, Adherent, Limit, $\omega$-Accumulation and Condensation Points

Let $(X,\mathcal O)$ be a topological space, let $U\subseteq X$ be its subset and let $x\in U.$

If every open set $O\in\mathcal O$ containing $x$ contains

Notes

Definitions: 1 2 3 4
Proofs: 5 6
Propositions: 7


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970