Definition: Limits and Accumulation Points of Sequences

Let $(X,\mathcal O)$ be a topological space and let $(a_n)_{n\in\mathbb Z}$ be a sequence with $a_n\in X$ for all $n\in\mathbb Z$, and let $x\in X.$

If every open set $O\in\mathcal O$ containing $x$ contains

Notes

Examples: 1
Parts: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984

Footnotes


  1. This is equivalent to saying the for every open set $O\in\mathcal O$ containing $x$ there exists an index $N\in\mathbb N$ such that $O$ contains all sequence members $a_n$ for all $n>N.$