Definition: Sequence
Let \((X)\) be a (non-empty) set. A sequence is a function $f:M\to X$ from a subset $M\subseteq \mathbb Z$ of integers to \(X\). We denote a sequence of points \(a_n\in X\) as \((a_n)_{n\in M}.\)
Mentioned in:
Chapters: 1
Definitions: 2 3 4 5 6 7 8 9 10 11 12 13
Parts: 14
Proofs: 15 16 17 18
Propositions: 19 20 21 22
Theorems: 23 24
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984