Definition: Ordering of Topologies

For any two topologies $\mathcal O_1$ and $\mathcal O_2$ defined on a set $X$, we can define a partial order using the subset relation:

$$\mathcal O_1\le \mathcal O_2\Longleftrightarrow \mathcal O_1\subseteq \mathcal O_2.$$

If $\mathcal O_1\le \mathcal O_2$, then we say

Notes:

Definitions: 1
Examples: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970