◀ ▲ ▶Branches / Topology / Definition: Ordering of Topologies
Definition: Ordering of Topologies
For any two topologies $\mathcal O_1$ and $\mathcal O_2$ defined on a set $X$, we can define a partial order using the subset relation:
$$\mathcal O_1\le \mathcal O_2\Longleftrightarrow \mathcal O_1\subseteq \mathcal O_2.$$
If $\mathcal O_1\le \mathcal O_2$, then we say
- $\mathcal O_1$ is smaller (or weaker or coarser) and
- $\mathcal O_2$ is larger (or stronger or finer).
Notes:
- The ordering $\le$ is only a partial order, since two topologies might be not comparable (i.e. if we choose the sets $\mathcal O_1$ and $\mathcal O_2$ in such a way that neither $\mathcal O_1\subseteq \mathcal O_2$, nor vice versa).
- For every set $X$, the largest topology (finest) topology is the discrete topology, the smallest (coarsest) the indiscrete topology.
Mentioned in:
Definitions: 1
Examples: 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Steen, L.A.;Seebach J.A.Jr.: "Counterexamples in Topology", Dover Publications, Inc, 1970