Definition: Affinely Dependent and Affinely Independent Points

Let \(\mathcal A=(A,V_A,v)\) be an affine space \(n+1\) points \[P_0,P_1,P_2\ldots,P_n\]

are called affinely independent points (respectively affinely dependent points), if the \(n\) vectors

\[x_1=\overrightarrow{P_0P_1},\,x_2=\overrightarrow{P_0P_2},\,\ldots,\,x_n=\overrightarrow{P_0P_n}\]

are linearly independent (respectively linearly dependent) in \(V_A\).

Definitions: 1 2 3 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Wille, D; Holz, M: "Repetitorium der Linearen Algebra", Binomi Verlag, 1994