Let \(\mathcal A=(A,V_A,v)\) be an affine space \(n+1\) points \[P_0,P_1,P_2\ldots,P_n\]
are called affinely independent points (respectively affinely dependent points), if the \(n\) vectors
\[x_1=\overrightarrow{P_0P_1},\,x_2=\overrightarrow{P_0P_2},\,\ldots,\,x_n=\overrightarrow{P_0P_n}\]
are linearly independent (respectively linearly dependent) in \(V_A\).