Definition: Generalization of Divisor and Multiple

Let $(R,\cdot,+)$ be an integral domain with the multiplicative neutral element $1,$ and let $a,b\in R.$

We call $a$ a divisor of $b$ (denoted by $a\mid b$), if and only if there exists an element $c\in R$ such that $ac=b.$ If $a\mid b,$ then we call $b$ a multiple of $a.$

Notes

Examples

Definitions: 1 2 3 4 5 6 7
Proofs: 8 9 10 11


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976