◀ ▲ ▶Branches / Algebra / Definition: Irreducible, Prime
Definition: Irreducible, Prime
Let \((R, +,\cdot)\) be an integral domain.
An element $p\in R$ is called a prime element of $R$, if and only if
- $p\neq 0,$ and
- $p$ is not a unit, and
- if $p\mid ab$, then $p\mid a\vee p\mid b,$ i.e. if $p$ divides a product of two elements $a,b\in R,$ then it equals on of them.
An element $p\in R$ is called irreducible, if and only if
- $p\neq 0,$ and
- $p$ is not a unit, and
- if $p\mid ab$, then either $a$ or $b$ is a unit.
Mentioned in:
Definitions: 1 2
Proofs: 3 4
Propositions: 5 6
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013
- Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976