Axiom: Archimedean Axiom
Let \(x,y\) be two positive real numbers, i.e. \(x > 0\) and \(y > 0\). Then there exists a natural number \(n\) such that \(nx > y.\)
Actually, the axiom is applicable for any kind of ordered fields fulfilling the Archimedian principle.
Table of Contents
Corollaries: 1 2 3 4 5
Mentioned in:
Definitions: 1
Proofs: 2 3 4
Theorems: 5
Thank you to the contributors under CC BYSA 4.0!
 Github:

 nonGithub:
 @Brenner
References
Bibliography
 Forster Otto: "Analysis 1, Differential und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
Adapted from CC BYSA 3.0 Sources:
 Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück