Definition: Subspace
Let \((F,+,\cdot)\) be a field and \(V\) be a vector space over \(F\). A non-empty subset \(U\subseteq V\) is called subspace of \(V\), if
- $0\in U,$
- $x + y\in U$ for all $x,y\in U,$
- $\alpha\cdot x\in U$ for all $\alpha \in F, x\in U.$
These properties are equivalent to those:
Table of Contents
Examples: 1
Mentioned in:
Definitions: 1 2 3 4
Lemmas: 5
Proofs: 6 7 8
Propositions: 9 10
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Koecher Max: "Lineare Algebra und analytische Geometrie", Springer-Verlag Berlin Heidelberg New York, 1992, 3rd Volume