Definition: Subspace

Let \((F,+,\cdot)\) be a field and \(V\) be a vector space over \(F\). A non-empty subset \(U\subseteq V\) is called subspace of \(V\), if

  1. $0\in U,$
  2. $x + y\in U$ for all $x,y\in U,$
  3. $\alpha\cdot x\in U$ for all $\alpha \in F, x\in U.$

These properties are equivalent to those:

Examples: 1

Definitions: 1 2 3 4
Lemmas: 5
Proofs: 6 7 8
Propositions: 9 10


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs yonatanmgr


References

Bibliography

  1. Koecher Max: "Lineare Algebra und analytische Geometrie", Springer-Verlag Berlin Heidelberg New York, 1992, 3rd Volume