Proof

(related to Proposition: Pythagorean Identity)

From the Euler's formula and the definition of the unit circle, it follows

\[|\cos(x)+i\sin(x)|^2=|\exp(ix)|^2=1\quad\quad x\in\mathbb R.\]

From the definition of the absolute value for complex numbers, it follows

\[\left(\sqrt{\cos^2(x)+\sin^2(x)}\right)^2=1\quad\quad x\in\mathbb R.\]

From the properties of \(n\)-th roots, it follows

\[\cos^2(x)+\sin^2(x)=1\quad\quad x\in\mathbb R.\]


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983