Proposition: Cauchy Criterion

A real infinite series \(\sum_{k=0}^\infty x_k\) is a convergent real series, if and only if the sequence of its partial sums is a Cauchy sequence, i.e. for every \(\epsilon > 0\) there is an index \(N(\epsilon)\in\mathbb N\) such that

\[\left|\sum_{k=m}^n x_k\right| < \epsilon\quad\quad \text{for all}\quad n\ge m\ge N(\epsilon).\]

Proofs: 1

Proofs: 1 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983