Proof
(related to Proposition: Integral Test for Convergence)
By hypothesis, $N\in\mathbb N$ is a non-negativ natural number ($N\ge 1$) and $f:[N,\infty)\to\mathbb R$ is a monotonically decreasing and non-negative function.
"$\Rightarrow$"
"$\Leftarrow$"
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983