Processing math: 100%

Proposition: Cauchy Product of Absolutely Convergent Series

Let \sum_{n=0}^\infty a_n and \sum_{n=0}^\infty b_n be two absolutely convergent series with A:=\sum_{n=0}^\infty a_n and B:=\sum_{n=0}^\infty b_n. We define a real sequence (c_n)_{n\in\mathbb N} with c_n:=\sum_{k=0}^n a_{n-k}b_k.

Then the series \sum_{n=0}^\infty c_n is also absolutely convergent with C:=\sum_{n=0}^\infty c_n, and it is called the Cauchy product of the series A and B: C=\sum_{n=0}^\infty c_n=\left(\sum_{n=0}^\infty a_n\right)\cdot\left(\sum_{n=0}^\infty b_n\right)=A\cdot B.

Proofs: 1

Parts: 1
Proofs: 2
Propositions: 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983