Definition: Absolutely Convergent Series

A real series \(\sum_{k=0}^\infty x_k\) is absolutely convergent, if the series of absolute values of the summands \[\sum_{k=0}^\infty |x_k|\] is convergent.

  1. Proposition: Convergence Behaviour of Absolutely Convergent Series
  2. Proposition: Cauchy Product of Absolutely Convergent Series

Corollaries: 1
Lemmas: 2
Proofs: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Propositions: 19 20 21 22 23 24 25 26 27 28 29 30


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983