◀ ▲ ▶Branches / Analysis / Proposition: Complex Conjugate of Complex Exponential Function
Proposition: Complex Conjugate of Complex Exponential Function
For every complex number \(z\in\mathbb C\), the complex conjugate of the complex exponential function of \(z\) equals the complex exponential function of the complex conjugate of \(z\), formally
\[\exp(z)^*=\exp(z^*).\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983