Proposition: Complex Conjugate of Complex Exponential Function

For every complex number \(z\in\mathbb C\), the complex conjugate of the complex exponential function of \(z\) equals the complex exponential function of the complex conjugate of \(z\), formally \[\exp(z)^*=\exp(z^*).\]

Proofs: 1

Proofs: 1 2 3 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983