Processing math: 100%

Proof

(related to Proposition: Exponential Function of General Base With Integer Exponents)

It has been shown already, that for positive real numbers a > 0 and an integer n\ge 0, the n-th-power function equals the exponential function of general base with natural exponents: a^n=\exp_a(n).\quad\quad( * ) Let n < 0. From the reciprocity law, it follows a^{-n}=\frac{1}{a^n}=\frac{1}{\exp_a(n)}=\exp_a(-n). Thus, ( * ) is valid for all integers n\in\mathbb Z.


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983