◀ ▲ ▶Branches / Analysis / Proposition: Exponential Function of General Base With Natural Exponents
Proposition: Exponential Function of General Base With Natural Exponents
Let \(n\ge 0\) be a natural number. Then the exponential function of general base \(a > 0\) is identical with the n-th power function, formally
\[\exp_a(n)=a^n\]
for all positive real numbers \(a > 0\) and all natural numbers \(n\ge 0\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983