Proposition: Exponential Function of General Base With Natural Exponents

Let \(n\ge 0\) be a natural number. Then the exponential function of general base \(a > 0\) is identical with the n-th power function, formally

\[\exp_a(n)=a^n\] for all positive real numbers \(a > 0\) and all natural numbers \(n\ge 0\).

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983