◀ ▲ ▶Branches / Analysis / Proposition: Functional Equation of the Exponential Function of General Base (Revised)
Proposition: Functional Equation of the Exponential Function of General Base (Revised)
Let \(f:\mathbb R\to \mathbb R\) be any continuous real function that obeys the functional equation
\[f(x+y)=f(x)\cdot f(y)\]
for all \(x,y\in\mathbb R\). Then there are two possible cases:
- either \(f\) is constant and equals \(0\), formally \(f(x)=0\) for all \(x\in\mathbb R\), or
- \(f\) equals the exponential function of general base \(f(x)=\exp_a(x)\) for all \(x\in\ \mathbb R\) for the base \(a:=f(1) > 0 \).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983