◀ ▲ ▶Branches / Analysis / Proposition: Functional Equation of the Complex Exponential Function
Proposition: Functional Equation of the Complex Exponential Function
For all complex numbers \(x,y\in\mathbb C\), the complex exponential function fulfills the following functional equation:
\[\exp(x+y)=\exp(x)\cdot \exp(y).\]
In particular, for any complex number \(z=a+ib\) with the real part \(\Re (z)=a\) and the imaginary part \(\Im (z)=b\), we have
\[\exp(z)=\exp(a+ib)=\exp(a)\cdot \exp(ib).\]
Table of Contents
Proofs: 1 Corollaries: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983