Definition: Exponential Function of General Base

Let \(a > 0\) be a positive real number, and let \(\ln(a)\) be the natural logarithm of \(a\). The exponential function of general base \(a\) is defined as the exponential function:

\[a^x:=\exp_a(x):=\begin{cases}\mathbb R&\mapsto \mathbb R\\x&\mapsto \exp(x\cdot \ln(a)).\end{cases}\]

  1. Proposition: Continuity of Exponential Function of General Base
  2. Proposition: Functional Equation of the Exponential Function of General Base
  3. Proposition: Exponential Function of General Base With Natural Exponents
  4. Proposition: Exponential Function of General Base With Integer Exponents
  5. Proposition: Functional Equation of the Exponential Function of General Base (Revised)

Corollaries: 1
Proofs: 2 3 4 5 6 7 8
Propositions: 9 10 11 12 13 14 15 16


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983